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Poisson regression

David Barron Event Analysis Hilary Term 2018 5 / 49



Counts of events

It is quite common to be faced with a requirement to analyse data that are counts
of the occurrence of some event. Typical examples are number of new entries in a
market, number of new rules created in an organization, number of job titles, visits
to the doctor, number of complaints received, and many more. This implies that
the variable can take only non-negative integer values.

The most common starting point for analysing such data is by means of Poisson
regression. This is a GLM with a Poisson probability distribution. This distribution
is

Pr(Y = y) = exp(−λ)λy

y ! ,

y = 0, 1, 2, . . . . The parameter of interest is λ, which is interpreted as the rate of
occurrence of events in a given unit of time. Because a rate must be non-negative,
the most common link function is the exponential function

η(x) = β0 + β1xi1 + β2xi2 + · · ·+ βkxik ;
λi = exp(η(x)).

.
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Poisson distribution

0.00

0.05

0.10

0.15

0.20

0 4 8 12

x

P
r(

X
 =

 x
)

λ = 3

David Barron Event Analysis Hilary Term 2018 7 / 49



Example: labour unions
Number of labour unions founded each year in the United States, 1837–1985.
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Poisson regression results

Call:
glm(formula = FND ~ poly(N, 2, raw = TRUE) + LAGF + AFL + NEWDEAL +

TAFTH + AFLCIO + DEP, family = poisson, data = union)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.787 -1.229 -0.220 0.678 3.462

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.65e-01 1.68e-01 -2.18 0.02941
poly(N, 2, raw = TRUE)1 4.14e-02 4.23e-03 9.79 < 2e-16
poly(N, 2, raw = TRUE)2 -1.81e-04 2.08e-05 -8.72 < 2e-16
LAGF 4.62e-02 1.19e-02 3.88 0.00011
AFL -2.30e-01 2.47e-01 -0.93 0.35345
NEWDEAL 6.96e-01 1.92e-01 3.62 0.00029
TAFTH 1.11e-01 2.51e-01 0.44 0.65721
AFLCIO -1.62e+00 2.93e-01 -5.53 3.3e-08
DEP 8.45e-02 1.15e-01 0.73 0.46288

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 538.89 on 148 degrees of freedom
Residual deviance: 249.36 on 140 degrees of freedom
AIC: 616

Number of Fisher Scoring iterations: 5

The results are reasonably straightforward to interpret. Each parameter and variable
pair constitute a multiplier of the rate. So, for example, when there had been 10
foundings the previous year, the rate in the current year would be multiplied by
e0.462 = 1.587.
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Effect plot
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Residuals, outliers, etc.
As with linear and logistic regressions, it is possible to plot residuals and do various
outlier tests.
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Negative binomial regression
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Overdispersion

The Poisson model is based on quite stringent assumptions. In our example, for
instance, we are implicitly assuming that the rate of occurrence of foundings is
constant during each year. However, given that our model asserts that the rate
depends on N (which varies during the year), that seems implausible. If it is not in
fact true, we in effect have additional sources of variation in the rate that are
unmodelled, leading to overdispersion. The main problem caused by
overdispersion is that estimated standard errors will be biased, usually downwards.
That is, we are at risk of rejecting the null hypothesis even when it is true. We can
solve this problem quite easily by using a method known as negative binomial
regression as it has a negative binomial probability distribution. The link function
is the same as in the case of Poisson regression. You can think of negative binomial
regression as being Poisson regression with an additional parameter to model the
overdispersion.
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Negative binomial regression example

Call:
MASS::glm.nb(formula = FND ~ poly(N, 2, raw = TRUE) + LAGF +

AFL + NEWDEAL + TAFTH + AFLCIO + DEP, data = union, init.theta = 5.200623228,
link = log)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.235 -1.117 -0.151 0.553 2.208

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.54e-01 1.98e-01 -2.29 0.0220
poly(N, 2, raw = TRUE)1 4.28e-02 5.68e-03 7.54 4.6e-14
poly(N, 2, raw = TRUE)2 -1.87e-04 2.85e-05 -6.55 5.8e-11
LAGF 5.57e-02 1.80e-02 3.10 0.0019
AFL -2.97e-01 3.77e-01 -0.79 0.4308
NEWDEAL 6.51e-01 2.70e-01 2.41 0.0160
TAFTH 2.19e-01 3.28e-01 0.67 0.5049
AFLCIO -1.60e+00 3.71e-01 -4.31 1.6e-05
DEP 1.17e-01 1.54e-01 0.76 0.4465

(Dispersion parameter for Negative Binomial(5.2) family taken to be 1)

Null deviance: 341.22 on 148 degrees of freedom
Residual deviance: 160.59 on 140 degrees of freedom
AIC: 591.3

Number of Fisher Scoring iterations: 1

Theta: 5.20
Std. Err.: 1.64

2 x log-likelihood: -571.27
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Effect plot
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Residuals, outliers, etc.
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Event history analysis

David Barron Event Analysis Hilary Term 2018 17 / 49



Basic principles
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Analysis of time to events

Methods known as event history analysis, survival analysis, or duration analysis are
used when we are interested in the length of time until an event occurs, known as
an episode or spell. We generally need at least two pieces of information: how long
the spell lasts and how it ended. We may also need to know the actual (calendar)
time at which it started and ended, rather than just the duration. Generally, some
spells will end with the event of interest and some will not. It is possible for there to
be multiple possible outcomes, but we will not deal with these more complex cases.

An example would be the lifespan of organizations. If we know when they are
founded and when they fail, then we can calculate the duration until they fail. In
addition, most likely there will be some that have not (yet) failed at the time of our
observation. These are called censored cases, and their existence is one of the
main reasons we have to use special methods for the analysis of this type of data.
We can’t just ignore censored cases, but on the other hand we can’t treat them as
being the same as cases that have actually ended; both of these would introduce
bias into regression parameter estimates.
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Basic concepts

Hazard rate The instantaneous rate at which events occur:

r(t) = lim
∆t→0

Pr(t ≤ T < t + ∆t|T ≥ t)
∆t

Survivor function. The probability that a unit doesn’t experience an event before
time t.

G(t) = 1− F (t) = Pr(T ≥ t).

From this, we can define the hazard rate as

r(t) = f (t)
G(t) .
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Survival data in R

The most commonly used package is survival, but I also use the package eha.
Example data: duration of jobs.

rr.s <- Surv(rrdat1$dur, rrdat1$des)

The first variable is the duration and the second is the indicator of how the episode
ended (0/1 or TRUE/FALSE). This will be the outcome variable in our regression
analyses.

David Barron Event Analysis Hilary Term 2018 21 / 49



Example data: job durations

id Identification number of subject
noj Serial number of the job episode
ts Starting time of the job episode
tf Ending time of the job episode
sex Sex
ti Date of interview (CMC: Months since Dec 1899, ie, Jan 1900 = 1)
tb Date of birth (CMC)
te Date of entry into the labour market (CMC)
tmar Date of marriage (CMC) [0 if not married]
pres Prestige score of current job, i.e. of job episode in current record of data
file
presn Prestige score of the next job (if missing: -1)
edu Highest educational attainment before entry into labour market
coho Birth cohort (1: before 1940; 2: 1940–1949; 3: 1950 onwards)
lfx ts - te
des tf != ti (if spell ends on date of interview, spell is censored)
dur tf - ts + 1
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Kaplan-Meier estimator

There are q points in time at which at least one event occurs. There are l intervals
between these q points. Then the Kaplan-Meier (or product limit) estimate of the
survivor function is

Ĝ(t) =
∏

l :τl<t

(
1− El

Rl

)
,

where El is the number of events in interval l and Rl is the risk set in the same
interval. From this we can also calculate the cumulative hazard:

Ĥ(t) = − log
(

Ĝ(t)
)
.
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Example

Call: survfit(formula = rr.s ~ 1)

time n.risk n.event survival std.err lower 95% CI upper 95% CI
1 600 0 1.000 0.00000 1.000 1.000
2 600 2 0.997 0.00235 0.992 1.000
3 597 5 0.988 0.00439 0.980 0.997
4 590 9 0.973 0.00660 0.960 0.986
5 581 3 0.968 0.00717 0.954 0.982
6 577 10 0.951 0.00880 0.934 0.969
7 567 9 0.936 0.00999 0.917 0.956
8 557 6 0.926 0.01070 0.906 0.947
9 548 7 0.914 0.01146 0.892 0.937

10 540 8 0.901 0.01225 0.877 0.925
11 528 4 0.894 0.01262 0.870 0.919
12 524 24 0.853 0.01455 0.825 0.882
13 499 8 0.839 0.01510 0.810 0.870
14 488 10 0.822 0.01574 0.792 0.854
15 477 6 0.812 0.01610 0.781 0.844
16 471 4 0.805 0.01633 0.774 0.838
17 467 9 0.789 0.01681 0.757 0.823
18 458 6 0.779 0.01711 0.746 0.813
19 452 8 0.765 0.01749 0.732 0.800
20 443 9 0.750 0.01789 0.716 0.786
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Estimates of G and H
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Stratified survivor functions

Call: survfit(formula = rr.s ~ sex, data = rrdat1)

n events median 0.95LCL 0.95UCL
sex=man 348 245 55 44 68
sex=woman 252 213 36 32 41
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Continuous time models
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Parametric rate models

Parametric rate models are used for events that occur in continuous time and where
we are interested in finding out something about the nature of duration dependence
on the rate. Define ci = 0 for episodes that end in an event and ci = 1 for those
that are censored. The likelihood can then be written:

L =
n∏

i=1
f (ti )1−ci G(ti )c

i .

This is how we use the information about censored cases. We know that an
observation that is censored at time t survived until at least time t. The probability
of that is just the survivor function, G(t). For events that occurred at time t, we
use the probability density function, f (t).

The basic model is

r(t) = r0(t) exp(β1X1 + β2X2 + · · ·+ βkXk).

r0(t) is called the baseline hazard rate.
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Exponential distribution

The simplest distribution that we can use is the exponential distribution.

r(t) = r0 exp(β1X1 + β2X2 + . . . )
G(t) = exp(−rt)
f (t) = r exp(−rt)

In other words, the baseline hazard rate is a constant. If events occur during some
interval with an exponential distribution at a rate r , then a count of events during
the same interval will have a Poisson distribution with mean 1/r . Notice that this is
the only model in which there is no time-dependence in the hazard rate.
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Example

Call:
phreg(formula = rr.s ~ edu + coho + lfx + pnoj + pres, data = rrdat1,

shape = 1, center = TRUE)

Covariate W.mean Coef Exp(Coef) se(Coef) Wald p
edu 11.097 0.077 1.080 0.025 0.002
coho

coho1 0.543 0 1 (reference)
coho2 0.256 0.608 1.837 0.114 0.000
coho3 0.201 0.611 1.842 0.119 0.000

lfx 74.980 -0.003 0.997 0.001 0.001
pnoj 1.406 0.060 1.061 0.044 0.177
pres 39.103 -0.028 0.972 0.006 0.000

log(scale) 4.489 0.280 0.000

Shape is fixed at 1

Events 458
Total time at risk 40782
Max. log. likelihood -2466
LR test statistic 96.07
Degrees of freedom 6
Overall p-value 0
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Estimated survivor and hazard functions
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Interpretation
The baseline hazard rate (r0(t)) is multiplied by the estimated effects. For example, the
variable edu has a minimum value of 9 and a maximum of 19. At its minimum, the
multiplier of the baseline hazard is exp(0.077 × 9) = 2.00, while at the maximum the
multiplier is exp(0.077 × 19) = 4.32. The multiplier can be plotted:
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Piece-wise exponential

A very flexible alternative is to specify durations that will have the same rate, but
allow the rate to differ across these periods. Suppose we hypothesize that the
hazard rate differs for survival times less than 100 months, between 100 and 200
months, 200 and 300 months, and over 300 months, but is constant within these
periods.

David Barron Event Analysis Hilary Term 2018 33 / 49



Example

Call:
phreg(formula = rr.s ~ edu + coho + lfx + pnoj + pres, data = rrdat1,

dist = "pch", cuts = c(100, 200, 300))

Covariate W.mean Coef Exp(Coef) se(Coef) Wald p
edu 11.097 0.068 1.071 0.025 0.006
coho

coho1 0.543 0 1 (reference)
coho2 0.256 0.439 1.550 0.115 0.000
coho3 0.201 0.334 1.397 0.122 0.006

lfx 74.980 -0.004 0.996 0.001 0.000
pnoj 1.406 0.069 1.071 0.044 0.118
pres 39.103 -0.026 0.974 0.005 0.000

Events 458
Total time at risk 40782
Max. log. likelihood -2438.9
LR test statistic 77.92
Degrees of freedom 6
Overall p-value 9.54792e-15
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Piecewise constant hazard
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Goodness of fit test

The exponential and piecewise exponential are nested models, so can be tested
against each other using a simple likelihood ratio test.

LR = −2(L0 − L1)

where L0 is the maximum log likelihood from the simpler model, and L1 is the
equivalent for the more complex model. The test statistic has a chi-square
distribution with degrees of freedom equal to the number of extra parameters in the
second model.

LR = −2× (−2466−−2439) = 54

with 3 degrees of freedom, which is highly significant, so we can conclude that the
piecewise model fits better than the simple exponential model.

David Barron Event Analysis Hilary Term 2018 36 / 49



Weibull hazard rate

r(t) = p
λ

(
t
λ

)(p−1)
exp(β1X1 + β2X2 + . . . )

The exponential model is obtained when p = 1, so it is straightforward to do a
hypothesis test of Weibull against exponential. In the exponential model, r = 1/λ.
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Example

Call:
phreg(formula = rr.s ~ edu + coho + lfx + pnoj + pres, data = rrdat1,

x = TRUE)

Covariate W.mean Coef Exp(Coef) se(Coef) Wald p
edu 11.097 0.071 1.074 0.025 0.004
coho

coho1 0.543 0 1 (reference)
coho2 0.256 0.554 1.740 0.115 0.000
coho3 0.201 0.528 1.695 0.123 0.000

lfx 74.980 -0.003 0.997 0.001 0.000
pnoj 1.406 0.058 1.060 0.044 0.187
pres 39.103 -0.027 0.974 0.006 0.000

log(scale) 4.406 0.306 0.000
log(shape) -0.090 0.036 0.013

Events 458
Total time at risk 40782
Max. log. likelihood -2462.8
LR test statistic 84.28
Degrees of freedom 6
Overall p-value 4.44089e-16
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Rate plots
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Predicted hazard

Warning in haz * exp(b[ix] * xx): Recycling array of length 1 in array-vector arithmetic is deprecated.
Use c() or as.vector() instead.
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Lognormal distribution

Call:
phreg(formula = rr.s ~ edu + coho + lfx + pnoj + pres, data = rrdat1,

dist = "lognormal")

Covariate W.mean Coef Exp(Coef) se(Coef) Wald p
(Intercept) -1.535 0.586 0.009
edu 11.097 0.068 1.070 0.025 0.006
coho

coho1 0.543 0 1 (reference)
coho2 0.256 0.448 1.566 0.115 0.000
coho3 0.201 0.353 1.423 0.120 0.003

lfx 74.980 -0.004 0.996 0.001 0.000
pnoj 1.406 0.066 1.068 0.044 0.137
pres 39.103 -0.026 0.974 0.005 0.000

log(scale) 2.425 0.346 0.000
log(shape) 0.349 0.195 0.074

Events 458
Total time at risk 40782
Max. log. likelihood -2410.8
LR test statistic 77.22
Degrees of freedom 6
Overall p-value 1.34337e-14
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Lognormal hazard
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Cox regression

This model may be written

log[r(t)] = β0(t) + β1x1(t) + β2x2(t) + · · · ,

When the covariates are constant over time, the ratio of the hazard rates for any
pair of individuals will not depend on time. The partial likelihood estimator discards
information about time, using only the order in which events occurred. This means
some loss of efficiency, but it is typically very small. Also, we cannot obtain
estimates of the dependence of the hazard on time. In many applications this
doesn’t matter; we are only interested in the effects of covariates.
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Example

Call:
coxreg(formula = rr.s ~ edu + coho + lfx + pnoj + pres, data = rrdat1)

Covariate Mean Coef Rel.Risk S.E. Wald p
edu 11.097 0.068 1.070 0.025 0.007
coho

coho1 0.543 0 1 (reference)
coho2 0.256 0.416 1.515 0.115 0.000
coho3 0.201 0.309 1.362 0.122 0.011

lfx 74.980 -0.004 0.996 0.001 0.000
pnoj 1.406 0.069 1.071 0.044 0.118
pres 39.103 -0.027 0.974 0.006 0.000

Events 458
Total time at risk 40782
Max. log. likelihood -2542.2
LR test statistic 76.93
Degrees of freedom 6
Overall p-value 1.53211e-14
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Discrete time
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Discrete time models

Used when events can only occur at fixed, discrete time points. Sometimes also
used when data can only be measured at discrete time points, typically whether an
event occurred at some point during a year. If Pi (t) is the probability of individual i
experiencing an event at time t, we can use logistic regression:

log
(

Pi (t)
1− Pi (t)

)
= b0(t) + b1x1(t) + b2x2(t) + . . . .

If data are collected annually, then each unit has one observation per year until it
experiences an event or is censored. b0(t) is the baseline hazard. In the example, I
define it to be log(t).
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Example

Call:
glm(formula = des ~ log(dur) + edu + coho + lfx + pnoj + pres,

family = binomial, data = rrdat2)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.038 -0.564 -0.423 -0.298 2.684

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.475527 0.372167 1.28 0.2013
log(dur) -0.554884 0.054545 -10.17 < 2e-16
edu 0.054748 0.027862 1.96 0.0494
cohocoho2 0.399447 0.125835 3.17 0.0015
cohocoho3 0.265145 0.133988 1.98 0.0478
lfx -0.004225 0.000975 -4.33 1.5e-05
pnoj 0.051997 0.048169 1.08 0.2804
pres -0.024409 0.005990 -4.08 4.6e-05

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2762.0 on 3667 degrees of freedom
Residual deviance: 2553.2 on 3660 degrees of freedom
AIC: 2569

Number of Fisher Scoring iterations: 5
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Estimated hazard rate
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Education effect
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